OPTIMIZATION OF PROCESS VARIABLES FOR MAXIMIZING PRODUCTION EFFICIENCY FOR A GLOBAL INDUSTRIAL GAS MANUFACTURER

AILABS Academy

PROBLEM STATEMENT

Automatic production volume estimation using level meter

 Determination of optimum value of process variables for maximum production utilizing minimum power

SOLUTION SUMMARY

Pain Points	Current Action	Our Solution		
 High cost associated with power. (INR 2 crore monthly bill) 	Manual adjustment of process variable using Engineer's expertise.	 By applying Data Analytics, we have shown that a maximum 6.51% power saving can be achieved. (About INR 12 lakhs / month saving) 		
 Manual volume measurement of LOX, LIN production. (prone to errors) 	Manual calculation of LOX, LIN production during decantation.	 We have developed a system for automatic production measurement from level meter readings. 		

SOLUTION APPROACH

Our solution involves three different phases:

Phase I: Arriving at Production Estimation

Production volume is estimated from level meter readings

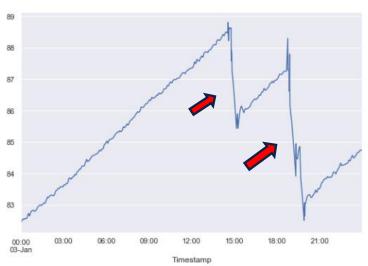
Phase II: Clustering of Production Mixture

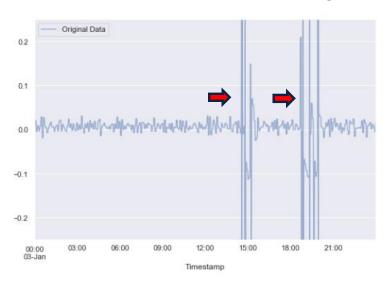
Clustering of production mixture

Phase III: Optimum Configuration of Process Variables for Minimum Spezi

Cluster-wise determination of optimum value of process variables for maximum production utilizing minimum power

DATA CHALLENGES

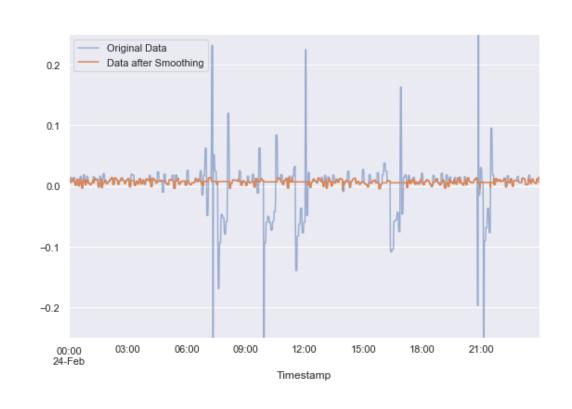

Challenges	Our approach		
Different frequency of datasets	Made calculations at 15 minute frequency as a production efficiency metric has to be computed using power and production		
 Lots of 'BAD' values of several process variables 	As 'BAD' values occur when data is not captured by sensors, we treat them as missing values and fill/discard them as needed		
Negative values and very high positive values for level difference readings	Replaced with mean of last 60 minutes		


CURRENT CHALLENGES IN PRODUCTION ESTIMATION

- Level meter is attached with a tank which has two valves, one for in flux and other for out flux.
- This makes production estimation challenging as plant engineer has to manually record decantation times to get an accurate measure of production.

Level meter reading

Level difference reading



Sudden change due to Decantation

OVERCOMING CHALLENGE USING SMOOTHING ALGORITHM

- Need to smooth out the spikes in level difference to take into account the production during decantation
- Smoothing algorithm sharply reduces the spikes
- Helps us to determine production from level differences directly
- Removes the need for manual recording of decantation times for estimating production

DETERMINATION OF PRODUCTION VOLUME

Production is estimated for LOX, LIN from level meter readings as follows:

$$production = \sum level \ difference \times const$$

where the sum is over required frequency

Production is estimated for GAN from flow meter readings as follows:

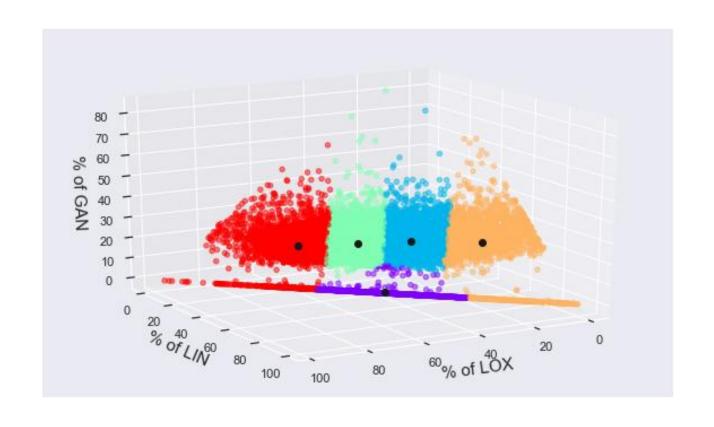
$$production = \sum flow \ rate \times time \times const$$

where the sum is over required frequency

* LOX-Liquid Oxygen, LIN-Liquid Nitrogen, GAN-Gaseous Nitrogen

PRODUCTION EFFICIENCY METRIC

 Production estimation is then used to compute power density, the client metric for production efficiency


$$Power\ Density = \frac{power_{input}}{\sum production}$$

Minimizing power density leads to maximum production volume utilizing minimum power

CLUSTERING OF PRODUCTION MIXTURE

- Clustering of production mix is needed to identify different modes of production
- K-Means Clustering was used to cluster production mixture
- Elbow method was used to determine optimum number of clusters
- Cluster centroids represent the different modes of clustering

OPTIMUM CONFIGURATION OF PROCESS VARIABLES

 Once clusters are obtained, optimum configuration of process variables has to be determined

For each cluster

- > Identify the timestamp with minimum power density
- > Extract the process variables data for the timestamp

RESULTS: COMPARISON WITH PLANT PRODUCTION CALCULATION

Daily Production	RMS Error		
LOX	0.1776		
LIN	0.2948		
GAN	0.0063		

RESULTS: OPTIMUM PROCESS VARIABLE VALUES

Optimum values of 7/227 process variables

Cluster	0	1	2	3	4
Spezi	0.534914806	0.782935888	0.716549952	0.879436758	0.500385771
Power	1122.51	1074.98	1149.03	1099.27	1152.03
AI141-4.PV	0.21573177	0.21735625	0.062159315	0.209731072	0.073316589
AI30-4.PV	0.0818711	0.099571295	0.089999914	0.11961773	0.666256845
AI30-8.PV	0.051268339	0.014723748	0.073375531	0.026855469	0.065918922
FI45-22.PV	-0.008789063	0.002194576	-0.0078125	-0.004882813	-0.013366692
LC49-4.PV	0.09765476	0	0.072485782	0.146484375	0.183105469
PC401-1.PV	-0.005615234	-0.049560547	-0.019287109	-0.005077446	0.030517578
PI16B-14.PV	5.494772911	0.01953125	5.456542969	0.012207031	0.007324219

RESULTS: TESTING WITH 2020 DATA

- Client provided us with data up to mid-June 2020
- AILABS provided client with daily production estimations
- Production modes determined by clustering successfully captured production modes during lockdown period also
- AlLABS provided client with optimum configuration for production for each production mode

